联系方式
精密铸造铸件工艺及浇冒口系统模块设计模板
时间: 2024-12-25 12:19:25 | 作者: 炼钢设备
当两壁相接便会产生图中所示的热截圆的变化,d大于a,b,c,换言之,就是d处热储量最大,凝固最慢,因此,在d处自然在没有冒口补充的情况下,非常易产生缩孔。
在实际生产时,我们常常为了减弱两壁相接处的热点效应,任意加大该处内圆角(Fillet)的r,热点问题是解决了,但相正确增大热截图的直径,使缩孔移向铸件的内部,严重时甚至于会产生表面凹陷的现象。
为了生产优质而价廉的包模铸件,做好工艺设计是十分重要的。在做工艺设计之前,首先要考虑选用包模铸造工艺生产时,在质量、工艺和经济方面的几个问题。
对于铸件质量上的要求,一般是包括两个方面,一是保证技术方面的要求的尺寸精度、几何精度和表面光洁度,二是保证机械性能和其它工作性能等内在质量方面的要求。
图2系一个有弧形通道的工件,同样如图2(a)的设计也无法用金属抽芯来制模,若改为图2(b)的设计,将内圆角改为尖角,则能够用两支抽芯做出弧形通道的内孔。图3刀具余隙的再设计
为了后继的加工,往往在工件设计时,一般为避免撞机的困绕,预先留有一个让出刀具到位时的间隙,如图3(a)所示,但无法抽出金属芯子,若改为图3(b) 的设计,就能够用金属抽芯直接做出刀具余隙。
包模铸造具有少切削、无切削的突出优点。近年来,由于冶金技术、制模、制壳材料和工艺以及检测技术等方面的发展,包模铸件的外部和内在质量逐步的提升,因此它的应用场景范围愈来愈广。不少锻件、焊接件、冲压件和切削加工件,都能够用熔模铸造方法生产。
这对于节约机械加工工时和费用,节约金属材料,提高劳动生产率和减少相关成本都具有很大意义。
在生产高尔夫球之不锈钢金属木杆头(metal-wood)时因表面积很大且厚度绝大部分仅有0.030 in.,许多厂家在没改变浇道系统的设计情况下,为了尽最大可能避免浇不足,而一味的提高钢水温度(超出熔点约300℃)及型壳的预热温度(约1400℃),结果,浇不足的情况有明显的改进,但微缩孔一堆及因型壳超温软化变形而铸件厚度大于蜡件厚度的情况层出不穷,笔者在改正浇道系统,增大浇注速率,缩短浇注补充距离后,钢水温度降低了100℃,型壳预热温度保持在1150℃(低于硅氧胶的软化点),同样可铸满,而又不会有微缩孔及变形增加厚度的缺陷。
壁的交接处要做出圆角,不同壁厚间要均匀过渡,这是防止熔模和铸件发生变形和裂纹的重要条件。图6-2所示为铸件壁的几种常见连接形式及其相关尺寸。
熔模铸件要尽可能避免大的平面,因为大平,干面上极易产生夹砂、凹陷、桔皮、蠕虫状铁刺等表面缺陷,因此铸件上的平面一般应小于200×200mm有大平面的铸件最好设计成曲面或阶梯形平面,或在平面上开设工艺槽、工艺筋、工艺孔等,以防止涂料堆积和型壳的分层、鼓胀。
熔模铸造可铸出比其它任何精密铸造法都复杂的孔型和内腔,从而能够大大节约加工工时和金属,并可减轻零件重量。
对于铸钢件,可铸出直径1.0~1.5mm的小孔。可是,孔和内腔的存在,往往使工艺复杂化,增加生产所带来的成本。故从工艺性角度考虑,孔腔形状不宜过于复杂,数量要少。有内腔的铸件,要有两个或更多的通孔,以便于上涂料和撒砂,并使内外型壳能牢固地连接在一起保证焙烧和浇注时内部型壳(即型芯)位置稳定,也便于内腔的清砂。,
可是,熔模铸造生产的铸件,由于冶金质量、热型浇注引起的晶粒粗大、表面脱碳以及内部缩松等方面的原因,铸件的机械性能(特别是塑性),还存在一些缺陷。对某些受力大和气密性要求高的铸件,采用包模铸造时,应最大限度地考虑零件在产品上的作用和性能要求,以确保其使用可靠。有些结构件改用包模铸造生产时,一定要考虑原用合金的铸造性能是否能满足零件的质量发展要求,否则就需要更改材质。
但也有些零件,能利用机械化程度较高的方法生产,例如用自动机床高速加工、精密锻造、冷挤压、压力铸造等等,这时,用包模铸造法生产在经济上的优越性就不一定显著,甚至成本还可能高一些,因此在这样的一种情况下,就不一定选用这种方法了。
总之,选择包模铸造法生产时,耍从其工艺特点出发,以零件质量为中心,并兼顾生产技术和经济上的要求。
如今将在生产上常会碰到的两壁相交的情况列举于图中,并提出改正的设计建议。
铸件壁厚设计要力求均匀,减少热节。图6-1所示为重7.5公斤的壳体铸件,原设计如a图所示,在A、B、C、D、E、F五处壁过厚,易形成各种铸造缺陷。后改成b图所示,即将上述五处壁厚减薄,形成6~7mm壁厚的箱形结构。ψ9D及ψ17Do两孔铸出以消除该处热节。F孔不铸,浇口设在此处。修改后铸件壁厚均匀,重量减轻至2.3kg。
可铸出的最小壁厚与合金种类、浇注工艺方法、以及铸件的轮廓尺寸等因素相关。表2列举的是1 in.长管件对各种金属包模铸件之最小壁厚。其实这些数值并不是真正的最小壁厚,诚如前述,金属液的浇注过热温度、浇注速率、壳模预热温度、铸件的形状及薄壁部分的表面积等都会影响最小壁厚的尺寸,这个表中之建议值为工业生产上的经验值。在这个标准下生产,良品率最好,亦即浇不足及微缩孔的现象最少。
另外如图4(a)之原始设计虽然内孔通道很圆滑,但必须要用较昂贵的水溶性芯子或陶瓷芯子,而且,在铸造后,清除孔道中陶瓷材料十分艰难,若改为(b)的设计,可直接由六个金属抽芯来射制蜡型,另在一图4内孔通道的再设计个多出的孔洞则可在铸件完成后再设法塞上或焊死。可大幅度提高生产效率及降低成本。
2).现实性精密铸造与其它的制造方法一样,有其一定的极限,因此,在铸件精度的考虑上,应面对现实,设计能够达得到的标准,否则,良品率太低,就丧失了用精密铸造降低生产所带来的成本,提高生产效率的目的了。
第一阶段金属液流入模穴因表面张力而形成的凸缘弧线随着液面的上升而增加当金属液的压力超出表面张力之阻抗就进入第二阶段快速充填模穴在连续充填的过程中进入第三阶段先进入模穴之金属液随着温度降低开始在金属液的前端形成凝固膜使金属液的流速降低甚至在完全兖满前因凝固膜加厚而阻止金属液继续流动第四阶段是金属液的压力超出前端凝固膜之阻抗突破凝固膜之阻抗产生二次金属液流继续充填工作再度经历前四阶段过程
包模铸造工艺几乎制造任何金属的复杂铸件,也能够在小零件的设计及生产上,有助于达到轻薄短小的目的,获得最大的强度重量比值。在设计最小壁厚时,金属熔液的流动性是一个很重要的考虑因素,因为它直接影响到金属液对模穴充填的能力。几乎同等重要的另一要素,是熔液在充填模穴时,金属液的浇注补充距离,以及铸件表面积之大小,金属的凝固状况,固、液相线的差异度,都归纳于铸造性中,特别对薄壁铸件特别重要。
浇注温度在某一特定厚度铸件及金属上,往往选择可能状况下以较低的温度,以期避免诸如气孔,夹渣、模壁反应及其它因温度过高而产生的铸疵。不过在浇注薄件时,为求延长金属液在注满模穴的过程中开始凝固的时间,往往还是以提高模温及金属液温来达到目的。
一般,较低的模温因为能够加速金属液的凝固,能够减少模壁反应,而有较好的表面光洁度,在薄壁铸件生产时,则为了能使金属液充分浇满型壳,祇有牺牲表面上的质量,而提高模温。
图6-3所示零件在A、B、C处均有大平面,C处有盲孔。在制壳流水在线生产时,几个平面均易产生缺陷,而且肓孔处在上涂料、撒砂和硬化时均感不便,铸件废品率较高.。后将平面A改成凸面作为熔模预变形(2毫米),并增设圆环形工艺筋2,B平面做出工艺槽1,C平面做出二个工艺孔3,变盲孔为通孔,在工艺条件相同的情况下,铸件废品率由20~50%降至5%以下,并能稳定地进行生产。
1)经济性在精密铸造的生产中,其蜡型是。 在包模铸造上,金属模的目的是在在射蜡机中,利用压力将液态、糊态或半固态的蜡‧挤射入金属模内,生产蜡型或塑料型,这些型是用来生产陶瓷模的,不论是实体模或型壳模。所有的模型都是可逝性的。在制模的关键性问题上,是如何将蜡型或塑料型从模具中取出,以及如何将芯子从模型中取出等。至于其它的制模问题,用于砂模铸造的原理同样适用于包模铸造
工艺设计的好坏也要从质量、工艺和经济这三方面去衡量。一项良好的工艺设计应当能在正常的生产条件下,稳定铸件质量,简化生产的基本工艺,效率高而成本低。
(1).分析铸件结构工艺性, (2)确定工艺方案和工艺参数,(3)设计浇冒口系统, (4)绘制工艺图或铸件图。
冲压件和焊接件壁薄而平面大,结构刚度小,改为熔模铸件时要适当增加壁厚,合理布置加强筋和工艺孔,减少平面面积,提高结构刚度。从简化生产考虑,有时将几个零件合并成整体件,以节约原来的加工和装配工时。例如图6-6所示的车床手柄原由三个机械加工件组成,改为整体熔模铸件后,加工工时由原来88分钟减少到18.5分钟,且节约了许多金属材料。整体铸件也能够是不同合金材料制造成的零件,此种结构称做镶合铸件。图6-7所示为铸铝壳体零件局部镶有黄铜套,改为整铸件时,可将加工好的铜芯(即镶件2)放入压型
在确定用包模铸造方法生产之后,工艺设计的任务就是要确定合理的工艺方案,采取必要的工艺措施以满足零件质量的要求。
工艺设计是理论和实践相结合的产物,是技术理论和生产经验的总结性技术资料。还要力求使设计符合实践性、科学性。
做好工艺设计要搞好两个方面的调查研究。首先必须对生产任务、产品零件图、材质和技术方面的要求等方面做深入分析:其次,要对生产条件如原材料、设备、工艺装备加工和制造能力、工人的操作技术水平等方面做深入的了解。只有做好这两个方面的调查研究,才能使设计符合生产实际情况。
当铸件芯子部位因受炽热的金属围绕,内外部份的散热状况不一致,内部陶瓷受高温而膨胀,但外部因有金属包覆又无法自由伸展,陶瓷材料因而有强烈的弯曲变形的应力,此时,外部热的不均匀分布,芯部自然向高温部分扭曲变形,便使铸件的壁厚产生了不均匀的结果。其变化差异如下
熔模铸造虽然能够铸造形状十分复杂的、加工量甚少甚至不加工的零件,但零件的材质、结构形状、尺寸大小和重量等,一定要符合熔模铸造本身的工艺技术要求。如铸件最小壁厚、最大重量、最大平面面积、最小孔槽以及精度和光洁度要求等,都要考虑到工艺上的可能性和简易性。
采用包模铸造在经济上是不是合理,要从多方面考虑。按每公斤的价格来说,包模铸件与同类型锻件相近甚至还高些,可是由于大幅度减少了加工量,因而零件最终成本还是低的。
图1铸件内角的重设计(1)部有一圆角,而且需要用两个抽芯,A及B两个芯子进出的方向如图1(a)所示,要想将有倒钩的芯子抽出而又不伤损工件是根本不可能。于是,重新设计工件,如图1(b),将内圆角取消,以避开这种芯子有倒钩无法抽出的困绕。倘若要生产原设计有内圆角的工件,惟有舍弃金属抽芯,而用成本比较高的水溶性芯子,随同蜡型一起自模中取出,再用酸蚀及水溶法将芯子自蜡型中除去,如此可保持工件的内圆角而又不会损伤蜡型。
在Fig. 7的上图表显示一个在最小厚度与最大长度的相互关系,而下图表则显示在铸件有通孔或盲孔时,孔径与孔深的关系。因为铸造过程尚有许多参数会影响其最大值与最小值,但此数值仍有其参考价值。
虽然熔融金属液是浇注入已预热的型壳,可是它依然可能如同其它的铸造工艺一样,在金属充满薄壁部分之前,先行凝固。当有高的面积与厚度比值时,会促使金属液快速冷却及凝固,不论如何,金属液在充满模穴的过程中,所需行进的距离必须要格外的注意,虽然在同样的面积与厚度比值,且厚度相同时,若要完全注满1/2in.宽、2in.长的模穴,自然比注满2in.宽、1/2in.长的模穴要难得多。
铸件结构工艺性对于零件质量,生产的基本工艺的可能性和简易性以及生产所带来的成本等影响很大。结构工艺性不好的铸件,往往孕育着产生缺陷和废品的可能性,也会增加制造成本。因此,做工艺设计时,首先要审查零件图,审查的目的有二:一是审查零件结构设计是不是满足包模铸造的生产特点,对那些设计不合理的部分做修改。第二个目的是根据已定的零件结构和技术方面的要求,采取对应措施以保证质量。
零件上要力求避免盲孔。有铸槽的零件,铸槽的宽度和深度要有一定限制。过窄过深的铸槽涂料层过薄,强度不够,清砂也很难。表6-2和图6-4所示为黑色金腐熔模铸件铸槽深度的尺寸。
由锻件和切削加工件改为熔模铸件时,在满足零件结构强度和刚度前提下,要力求减薄壁厚,并使之均匀,减少热节,如图6-5所示。